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, , ,Glassy dynamis: e�etive temperatures and intermittenies from a two-state modelM. Naspreda∗, D. Reguera, A. Pérez-Madrid, and J. M. RubíDepartament de Físia Fonamental, Universitat de Barelona, Diagonal 647, E-08028 Barelona, Spain(Dated: Otober 17, 2004)We show the existene of intermittent dynamis in one of the simplest model of a glassy system:the two-state model, whih has been used1 to explain the origin of the violation of the �utuation-dissipation theorem. The dynamis is analyzed through a Langevin equation for the evolution of thestate of the system through its energy landsape. The results obtained onerning the violation fatorand the non-Gaussian nature of the �utuations are in good qualitative agreement with experimentsmeasuring the e�etive temperature and the voltage �utuations in gels and in polymer glasses. Themethod proposed an be useful to study the dynamis of other slow relaxation systems in whihnon-Gaussian �utuations have been observed.I. INTRODUCTIONComplex systems are often distinguished by the exis-tene of a very intriate free energy landsape onsist-ing of many barriers whih the system has to overometo evolve. It is preisely the presene of these barriersthe responsible for the slow relaxation dynamis whihmanifests in the appearane of peuliar phenomena asaging, lak of a �utuation-dissipation theorem and in-termittenies aused by the presene of large �utuations.These features, predited and observed in systems of dif-ferent nature as glasses, granular �ows, foams, rum-pled materials and in the dynamis of the disorderedsystems2,3,4,5,6,7, have attrated the interest of many re-searhers during the last years with the purpose of de-sribing the main features of slow relaxation dynamis8.In a previous paper1, we have proposed a minimal re-laxation model aimed at haraterizing the dynamis ofa system relaxing in two very di�erent time sales, whihare related to inter-well and intra-well relaxation pro-esses. Two senarios were analyzed for this purpose.In the �rst of them, the system may explore the wholereation oordinate spae undergoing a di�usion proessdesribed by a Fokker-Plank equation9, whih aountsfor the intra-well and inter-well relaxations. In the other,obtained from the �rst one by eliminating the fast vari-able, the system undergoes an ativated proess. In spiteof its simpliity the model shows some of the peuliarfeatures of the dynamis of slow relaxation systems andproposes an explanation of why and how the �utuation-dissipation is violated. It was found that the violationfator or e�etive temperature depends on the observ-able and on the initial populations in the wells. Thisresult shows that the e�etive temperature does not uni-voally haraterize the thermal state of a glassy systemundergoing ativated dynamis10.Our purpose in this paper is to use that model to ex-plain the presene of intermittenies in the dynamis of
∗Corresponding author: naspreda��n.ub.es

a system in a glassy phase and the non-Gaussian natureof the probability distribution funtion, whih have re-ently been observed in measurements of the dieletriproperties of gels and polymer glasses11,12, and in sometheoretial studies of spin-glass models13,14.The paper is organized as follows. In Setion 2, weanalyze some of the main traits of glassy dynamis froma two-state model. Setion 3 is devoted to present theresults onerning the intermittent behavior and the non-Gaussian nature of the �utuations. Some onlusionsand perspetives are presented in the �nal setion.II. GLASSY DYNAMICS FROM A TWO-STATEMODELIn a two-state model, the minimal relaxation model forglassy systems15,16,17, one assumes that the proess on-sists of two main steps: a slow relaxation, in whih theoordinate haraterizing the state of the system jumpsfrom a potential well to the next one, and a fast equi-libration proess in the well. It has been shown1 thatthe dynamis of the system an be analyzed in terms ofa Fokker-Plank equation desribing a di�usion proessthrough the free energy landsape Φ(γ)18,
∂ρ(γ, t)

∂t
=

∂

∂γ
D

[

∂ρ(γ, t)

∂γ
+

ρ(γ, t)

kBT

∂Φ(γ)

∂γ

]

. (1)In the simplest ase, Φ(γ) would be just a bistablepotential. In the previous equation, ρ(γ, t) is the prob-ability distribution funtion whih depends on the orderparameter or reation oordinate γ, D is the di�usionoe�ient, T is the temperature of the bath and kB theBoltzmann onstant. When the height of the barrier sep-arating the two minima of the potential is large enoughompared to thermal energy the systems ahieves a stateof quasi-equilibrium in eah well. The evolution of thesystem then proeeds by jumps from one well to the otherundergoing an ativated proess. The dynamis orre-sponding to this situation an be obtained by eliminat-ing the fast degrees of freedom in suh a way that it an



2be haraterized simply by the populations at eah well.The Fokker-Plank equation then redues to the follow-ing kineti equations governing the population dynamisat both wells1,19
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= −j(t) − jr(t). (2)where the urrent j(t) is de�ned as:
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,(4)where γ1 and γ2 denote the position of the two minimaand γ0 the position of the top at the barrier. The noiseterm jr(t) results from the oarsening of the orrespond-ing random term Jr(γ, t) in the Langevin equation re-lated to the Fokker-Plank equation (1),1. Whereas thelatter satis�es the �utuation-dissipation theorem inher-ent to the di�usion proess along the reation oordinateformulated as20
〈Jr(γ, t)Jr(γ′, t′)〉 = 2D〈ρ(γ, t)〉δ(γ − γ′)δ(t − t′) (5)the former does not obey a similar expression. Its or-relation is given by18:

〈jr(t)jr(t′)〉 = (k→〈n1〉+k←〈n2〉)δ(t−t′) 6= 2k→n
eq
1 δ(t−t′)(6)where the last term is the value of the orrelation atequilibrium, and n

eq
1 is the equilibrium population in the�rst well.This result learly indiates that the violation of the�utuation- dissipation theorem is preisely due to theoarsening of the desription. When one eliminatesthe fast variables reduing the dynamis to that of anativated proess the system annot progressively passthrough loal equilibrium states from one well to theother but proeeds by jumps and onsequently remainsoutside equilibrium. This explains why the �utuation-dissipation theorem, a result stritly valid when the �u-tuations take plae around an equilibrium state21, is notful�lled.From the model proposed we an analyze the non-equilibrium response of the system. Let us assume anexternal perturbation −ε(t)O(t) that is plugged in atthe waiting time tw, de�ned as the time elapsed af-ter quenhing (O(t) is the observable onsidered and
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FIG. 1: The e�etive temperature plotted as a funtion ofthe frequeny (in arbitrary units) for di�erent values of thewaiting time.
ε(t) = ε0θ(t − tw) is a generelized fore that is oupledto the observable). The response is then given by

R(t, tw) =
∂〈δO(t)〉

∂ε(tw)

∣

∣

∣

∣

ε0→0

, (7)where the average of the observable is de�ned as
〈δO(t)〉 =

∫

O(γ)δρ(γ, t)dγ = (O1 − O2) δn1, (8)whereas the values O1 and O2 are the values of the ob-servable at the minima 1 and 2, respetively. On theother hand, the orrelation is
CO(t, tw) = e−(t−tw)/τ (O1−O2)[j→(O1−O0)−j←(O2−O0)].(9)Both quantities satisfy the relation
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. (11)Here τ−1 = (k→ + k←) is the relaxation time of theproess and the parameter A has the form
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3Sine the equilibrium state is ahieved for tw → ∞, onean easily verify that the e�etive temperature oinideswith that of the bath and the relation (10) beomes the�utuation-dissipation theorem.An important onsequene of our previous analysis isthat the e�etive temperature is not a robust quantitysine it depends on the observable onsidered as well ason the initial populations at the wells. We then onludethat in the ase of an ativated proess that quantityis a parameter measuring the distane of the system tothe equilibrium state but it is not universal and onse-quently an hardly be onsidered as a thermodynamitemperature10.Our expression Eq.(11) an be used to reprodue thedependene of the violation fator on the frequeny ob-served in experiments11,12. If we assume that the wholerelaxation proess takes plae through onseutive ati-vated proesses for whih Eq.(2) applies, we an infer aglobal behavior of that quantity by identifying the in-verse of the relaxation time with a frequeny. By onsid-ering the ase A = 0, in whih the violation fator doesnot depend on the observable , we then onlude thatthe e�etive temperature at low frequenies behaves as:
Teff ∼ ω−1. In the experiments one �nds that the e�e-tive temperature dereases when inreasing the frequenyfollowing a power law whose exponent is in between −1.1and −1.2,12. As in the experiments, it is found that thee�etive temperature tends to the bath temperature forvery large waiting times (see Fig. 1).III. INTERMITTENT DYNAMICSWe will analyze in this setion the intermittent behav-ior of the �utuations taking plae when the system isquenhed below the glass transition. This type of be-havior has been reported in experiments measuring the�utuation spetrum and the response of a Laponite solu-tion and of a polymer glass11,12. To this purpose, we willpartiularize the model disussed in Se. 2 to the aseof the quarti potential plotted in Fig. 2. The dynamisof this model is governed by the Fokker-Plank equation(1) or through the equivalent Langevin equation

dγ

dt
= −γ(γ − γ1)(γ − γ2) + Jr. (13)where Jr has been onsidered a Gaussian white noiseproess having, as a �rst approximation, a onstant am-plitude: D〈ρ(γ, t)〉 ≈ α. We will see that this approxi-mation is enough to explain the experimental results.By numerial simulation of the Langevin equation (13),we have omputed the value of the following observable

O(γ) =

{

−a1(γ − γ1) if γ < 1
a2(γ − γ2) if γ > 1

, (14)whih has a piee-wise dependene on γ, having a zerovalue at γ1 and γ2. In our ase we have taken γ1 = −2

and γ2 = 3 and the parameters a1 and a2 have beenhosen arbitrarily as a1 = 6 and a2 = 9, ensuring theontinuity of the observable. The loation of the maxi-mum of the observable has been plaed at γ = 1, to showin a learer way the ourrene of a transition betweenthe two wells. When the state is at the top of the barrierthe probability to go bak to the minimum γ1 is 50%.The value of α should be onsistent with the non-stationary nature of the proess and has to be intrin-sially related to the waiting time. Therefore, we haveuse di�erent values of this parameter to mimi di�erentvalues of the waiting time.In Fig. III we have represented the value of the observ-able O(γ) orresponding to a single trajetory obtainedfrom the simulations of Eq.(13), with α = 1.5. We ob-serve the presene of an intermittent event, whih is thesignature of a jump from one well to another. Therefore,the presene of intermittenies is a onsequene of theativated nature of the relaxation proess.Averaging over many trajetories we have obtainedthe probability distribution funtion for the observable,whih has been plotted in Fig. 4, for di�erent values of
α. The non-Gaussian form of the urves is, in our model,a onsequene of the non-paraboli form of the poten-tial. Intermittenies add more weight to the tails of thedistribution, thus stressing its non-Gaussian nature.IV. CONCLUSIONSIn this paper we have used the ativation over a bar-rier to model the evolution of a system when is quenhedbelow the glass transition. Using as a model a simplequarti potential, we have proved the existene of an in-termittent dynamis in the aging proess aused by thepresene of large �utuations. Similar behavior has beenobserved in reent experiments. We have shown that the
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FIG. 2: Quarti potential used in our model.
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FIG. 3: The evolution of a single realization of the observable
O(γ), orresponding to α = 1.5. The single step-time hasbeen taken as 0.01. We have onsidered 10000 time intervals.probability distribution funtion orresponding to thoseevents deviates from its Gaussian form observed for sys-tems lose to equilibrium and exhibits exponential tailsas those enountered experimentally.The model proposed and its possible generaliza-tions ould, with the help of the stohasti proessestheory22,23, onstitute a useful tool to haraterize thedynamis of systems far from equilibrium for whih aommon phenomenology in the behavior of the �utua-

tions is being found.
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